The xfpt plain text to XML
processor

Philip Hazel

The xfpt plain text to XML processor
Author: Philip Hazel

Copyright © 2008 University of Cambridge
Revision 0.06 06 February 2008

Contents

I [Y o To LU o] £ o o PP Lo,
1.1 The XfPt COMMANT lINEooiiiiiii e e e e 1.
1.2 A ShOrt XIPt @XAMPIE ...t 2.
1.3 Literal and non-literal PrOCESSINGcueceiiiiiiiiiiiiiee ettt e e 2.....
1.4 Format Of dir€CHIVE lINESeeiiiiiiiiiii e T
1.5 CalliNG MABCTOSeeeeieiiiiiiiiie ettt e e e e e e e e e e e e r e e e e e e e reeaaeeas C I

2. Flag SEOUEBNCES ...oeiiiiieiiiiiitee ettt e e e e et e e e e e e e e e e e e e e e e e e e aeeeas 4.
2.1 Flag sequences for XML entities and xfpt variablescccoeiiiiiiiiiiii 4..
2.2 Flag sequences for CalliNg MACTOSciiiiiiiiiiiiiiiieee e 4.
2.3 Other flag SEQUENCEScoooiiiiiiiiii et e e e e e e e e s 4.
2.4 Unrecognized flag SEQUENCEScooiiiiiiiiiiii et e e e e S
2.5 Standard flag SEQUENCESoiiuuiiiiiieee et e e e e e e e e e e e 5.

3. BUIlt-in dir€CtiVE PrOCESSING oiiiiiiiiiiieieee ettt e e e e e e r e e e e e 6.......
3.1 TRNE .Arg QIFECTHIVE ...eeieiiiieiee ettt e e e e e e e e e e e e e e eeeeeas G......
3.2 The .eaCharg dirECHIVEuiiiiiiieeiie et e e e 6.......
3.3 The .€CNO AIFECTIVE ...t VAR
3.4 The .eNdarg AIFECTIVEoeiiiiiiiiiiiiii et e e e e e e e e e e I.......
3.5 The .enNdEaCh TIMECLIVEcoiiiiiiiiieee et To......
3.6 The .endinliteral dIrECTIVEccuiiiiiiiee e A
3.7 The .flag AIFECTIVEeiiiiiiee et e e e e e e e e e Lo
3.8 The .INCIUAE TIFECHIVEeiiiiieiiiiii e e e I.......
3.9 The .iNHteral dir€CHIVEoeiiiiiiiiiee e I.......
3.10 The .literal dir€CHIVE ... e e e s nnnnnneee e
3.11 THE .MACIO TIFECTHIVEeeiiiiiiiiiiiii ettt e e e e e e e e e r e e e e e e aanes L.
3.12 TRE .NESEAIFECLIVEeiiiiiiiie ittt e e e e e e e e e e s e e e e e e e 8.
3.13 THeE .NONIAIFECHIVE ...t e e e e e e e e e e e 8.
3.14 TRE .POP QUMECHIVE ...coeiiieeteeee ettt e et e e e e e e e e e e eee s 9.
3.15 TRE .PUSH GIFECLIVEeeiiieiiiiiiee ettt e e e e e e e e 9.
3.16 The .reViSiON AIFECTIVEeeiiiiiiiiiiti ettt e e 9.
3.17 TRE .SEUAINECTIVEeeeiiiiieiiii ettt e e e e e e e e e e e e Q...

4. The standard macros for DOCBOOKooiiiiiiiiiiiiiiic e 10...
4.1 OVETAII SEIUP .eeeieeeiiiiiie ettt e e et e e e e e e e e e e e e e e e e n e e e e e e e 10.......
4.2 Chapters, sections, and SUDSECLONSooiiiiiiiiiiiiiiee e 10...
4.3 Prefaces, appendixes, and COIOPNONSocuiiiiiiiiiiiii e 10...
U I = =T T TP 11......
4.5 TEMIZEA lISTS ...eiiieeiiiittie ettt e e e e e e e e e s e e e e e e e 11.......
4.6 OFAEIEA lISTSeiieieeee ettt e e et et e e e e e e e e e e e e 11.......
Y - V= o] L= 11 PP 11.......
4.8 INESTEA lISTS ...eeeieeeiiiiit ettt e et e e e e e e e e e e e e e e e e e e e 12......
4.9 DISPIAYEA TEXEeveeeiiiieiiiee ettt e e e e e e 12......
4.10 BIOCK QUOLESeieiiiieeiiiitte ettt e e e et e e e e e e e e e e e e e nnene s 12......
4.11 REVISION MATKINGS ..oeeiiiiiiiiiiieeee et e et e nnnenees 12.....
4,12 INfOrmMal tADIES ...ttt e e e e e e e e eeeeeees 13......
4.13 FOrmMAal tADIEScoeiiiiiiee et 14.......
4.14 Figures and iMEAGES .. .coeieeiiiieiirieieeeeee ittt et e e e s s s aibar e e e e e e e s e s b b e e e e e e e e e e s anbbreeeeeeeeeaaaa 14.....
415 FOOINOTES ...eeiiiiiiiiiiiite ettt ettt e e e e e e e et e e e e e e s bbb e e e e e e e e e anbbnnreeeaeeeaan 15.......
o T 1 [0 1= (=SSR SE R 15........

1. Introduction

xfpt is a program that reads a marked-up ASCII source file, and converts it into XML. It was written
with DocBook XML in mind, but can also be used for other forms of XML. UnlikeciiDoc
(http://wvww.methods.co.nz/asciidog] xfpt does not try to produce XML from a document that is
also usable as a freestanding ASCII document. The inpudfpoiis very definitely “marked up”. This
makes it less ambiguous for large and/or complicated documgiptsis also much faster than
AsciiDoc because it is written in C and does not rely on pattern matching.

xfpt is aimed at users who understand the XML that they are generating. It makes it easy to include
literal XML, either in blocks, or within paragraphxfpt restricts itself to two special characters that
trigger all its processing.

xfpt treats any input line that starts with a dot adirective line. Directives control the way the input

is processed. A small number of directives are implemented in the program itself. A macro facility
makes it possible to combine these in various ways to define directives for higher-level concepts such
as chapters and sections. A standard macro library that generates a simple subset of DocBook XML is
provided. The only XML element that the program itself generatep@a> ; all the others must be
included as literal XML, either directly in the input text, or, more commonly, as part of the text that is
generated by a macro call.

The ampersand character is special within non-literal text that is processdgtbyn ampersand
introduces dlag sequence that modifies the output. Ampersand was chosen because it is also special

in XML. As well as recognizing flag sequences that begin with an ampersdptdconverts grave
accents and apostrophes that appear in non-literal text into typographic opening and closing quotes, as
follows:

becomes
becomes '’

Within normal input text, ampersand, grave accent, and apostrophe are the only characters that cause
xfpt to change the input text, but this applies only to non-literal text. In literal text, there are no
markup characters, and only a dot at the start of a line is recognized as special. Within the body of a
macro, there is one more special character: the dollar character is used to introduce an argument
substitution.

Notwithstanding the previous paragrapfpt knows that it is generating XML, and in all cases when
a literal ampersand or angle bracket is required in the output, the appropriate XML entity reference
(&, < , or> , respectively) is generated.

1.1 The xfpt command line
The format of thefpt command line is:
xfpt[options] [input source]
If no input is specified, the standard input is read. There are four options:

-help
This option causedpt to output its “usage” message, and exit.

-0 <output destination>
This option overrides the default destination. If the standard input is being read, the default
destination is the standard output. Otherwise, the default destination is the name of the input file
with the extensionxml, replacing its existing extension if there is one. A single hyphen character
can be given as an output destination to refer to the standard output.

-S <directory path>
This option overrides the path #dpt’s library directory that is built into the program. This makes
it possible to use or test alternate libraries.

-V
This option causedpt to output its version number and exit.

1 Introduction

1.2 A short xfpt example

Here is a very short example of a complefpt input file that uses some of the standard macros and
flags:

.include stdflags
.include stdmacs
.docbook

.book

.chapter "The first chapter"
This is the text of the first chapter. Here is an &'italic'&
word, and here is a &*bold*& one.

.section "This is a section heading"

We can use the &*ilist*& macro to generate an itemized list:
dlist

The first item in the list.

.next

The last item in the list.

.endlist

There are also standard macros for ordered lists, literal
layout blocks, code blocks, URL references, index entries,
tables, footnotes, figures, etc.

1.3 Literal and non-literal processing
xfpt processes non-directive input lines in one of four ways (known as “modes”):

In the default mode, text is processed paragraph by paradgEpdend of a paragraph is indicated

by the end of the input, a blank line, or by an occurrence oflitexal directive. Other directives

(for example,.include) do not of themselves terminate a paragraph. Most of the standard macros
(such as.chapter and .sectior) force a paragraph end by starting their contents witliteral
directive.

Becausexfpt reads a whole paragraph before processing it, error messages contain the phrase
“detected near linann”, where the line number is typically that of the last line of the paragraph.

In the “literal layout” mode, text is processed line by line, but is otherwise handled as in the default
mode. The only real difference this makes to the markup from the user’s point of view is that both
parts of a set of paired flags must be on the same line. In this mode, error messages are more likely
to contain the exact line number where the fault lies. Literal layout mode is used by the standard
.display macro to generatditerallayout> elements.

In the “literal text” mode, text is also processed line by line, but no flags are recognized. The only
modificationxfpt makes to the text is to turn ampersand and angle bracket characters into XML
entity references. This mode is used by the standacdde macro to generate
<literallayout> elements that includdass=monospaced

In the “literal XML" mode, text lines are copied to the output without modification. This is the
easiest way to include a chunk of literal XML in the output. An example might be the
<bookinfo> element, which occurs only once in a document. It is not worth setting up a macro
for a one-off item like this.

The .literal directive switches between the modes. It is not normally used directly, but instead is
incorported into appropriate macro definitions. Thditeral directive can be used to test the current
mode.

1 There is, however, a special case when a paragraph contains one or more footnotes. In that situation, each part of the outer

paragraph is processed independently.

2 Introduction

Directive lines are recognized and acted upon in all four modes. However, an unrecognized line that
starts with a dot in the literal text or literal XML mode is treated as data. In the other modes, such a
line provokes an error.

If you need to have a data line that begins with a dot in literal layout mode, you can either specify it
by character number, or precede it with some non-acting markup. These two examples are both valid:

&#tx2e;start with a dot
&"&.start with a dot

The second example assumes the standard flags are defined: it precedes the dot with an empty italic
string. However, this is untidy because the empty string will be carried over into the XML.

In literal text or literal XML mode, it is not possible to have a data line that starts with a dot followed
by the name of a directive or macro. You have to use literal layout mode if you require such output.
Another solution, which is used in the source for this document (where many examples show directive
lines), is to indent every displayed line by one space, and thereby avoid the problem altogether.

1.4 Format of directive lines

If an input line starts with a dot followed by a space, it is ignoredkpy. This provides a facility for
including comments in the input. Otherwise, the dot must be followed by a directive or macro name,
and possibly one or more arguments. Arguments that are strings are delimited by white space unless
they are enclosed in single or double quotes. The delimiting quote character can be included within a
guoted string by doubling it. Here are some examples:

Jiteral layout
.set version 0.00
.row "Jack's house" 'Jill"s house'

An unrecognized directive line normally causes an error; however, in the literal text and literal XML
modes, an unrecognized line that starts with a dot is treated as a data line.

1.5 Calling macros

Macros are defined by thenacro directive, which is described in section 3.11. There are two ways of
calling a macro. It can be called in the same way as a directive, or it can be called from within text
that is being processed. The second case is called an “inline macro call”.

When a macro is called as a directive, its name is given after a dot at the start of a line, and the name
may be followed by any number of optional arguments, in the same way as a built-in directive (see the
previous section). For example:

.chapter "Chapter title" chapter-reference

The contents of the macro, after argument substitution, are processed in exactly the same way as
normal input lines. A macro that is called as a directive may contain nested macro calls.

When a macro is called from within a text string, its name is given after an ampersand, and is
followed by an opening parenthesis. Arguments, delimited by commas, can then follow, up to a
closing parenthesis. If an argument contains a comma or a closing parenthesis, it must be quoted.
White space after a separating comma is ignored. The most common example of this type of macro
call is the standard macro for generating a URL reference:

Refer to a URL via &url(http://x.example,this text).

There are differences in the behaviour of macros, depending on which way they are called. A macro
that is called inline may not contain references to other macros; it must contain only text lines and
calls to built-in directives. Also, newlines that terminate text lines within the macro are not included
in the output.

A macro that can be called inline can always be called as a directive, but the opposite is not always
true. Macros are usually designed to be called either one way or the other. Howeveehand
.index macros in the standard library are examples of macros that are designed be called either way.

3 Introduction

2. Flag sequences

Only one flag sequence is built-into the code itself. If an input line ends with three ampersands

(ignoring trailing white space), the ampersands are removed, and the next input line, with any leading
white space removed, is joined to the original line. This happens before any other processing, and
may involve any number of lines. Thus:

The quick &&&
brown &&&
fox.

produces exactly the same output as:
The quick brown fox.

2.1 Flag sequences for XML entities and xfpt variables

If an ampersand is followed by a # character, a number, and a semicolon, it is understood as a
numerical reference to an XML entity, and is passed through unmodified. The number can be deci-
mal, or hexadecimal precededyFor example:

This is an Ohm sign: Ω.
This is a degree sign: °.

If an ampersand is followed by a letter, a sequence of letters, digits, and dots is read. If this is
terminated by a semicolon, the characters between the ampersand and the semicolon are interpreted as
an entity name. This can be:

» The name of an inbuilkfpt variable. At present, there is only one of these, cakigd.rev . Its
use is described with theevision directive below.

» The name of a user variable that has been set bygdtairective, also described below.

» The name of an XML entity. This is assumed if the name is not recognized as one of the previous
types. In this case, the input text is passed to the output without modification. For example:

This is an Ohm sign: &0Ohm;.

2.2 Flag sequences for calling macros

If an ampersand is followed by a sequence of alphanumeric characters starting with a letter, termin-
ated by an opening parenthesis, the characters between the ampersand and the parenthesis are
interpreted as the name of a macro. See section 1.5 for more details.

2.3 Other flag sequences

Any other flag sequences that are needed must be defined by meansflaitiéective. These are of
two types, standalone and paired. Both cases define replacement text. This is always literal; it is not
itself scanned for flag occurrences.

Lines are scanned from left to right when flags are being interpreted. If there is any ambiguity when a
text string is being scanned, the longest flag sequence wins. Thus, it is possible (as in the standard
flag sequences) to define batk and&<< as flags, provided that you never want to follow the first of
them with a< character.

You can define flags that start wia#, but these must be used with care, lest they be misinterpreted
as numerical references to XML entities.

A standalone flag consists of an ampersand followed by any number of non-alphanumeric characters.
When it is encountered, it is replaced by its replacement text. For example, in the standard flag
definitions,&&is defined as a standalone flag with with the replacement.∓ .

A paired flag is defined as two sequences. The first takes the same form as a standalone flag. The
second also consists of non-alphanumeric characters, but need not start with an ampersand. It is often

4 Flag sequences

defined as the reverse of the first sequence. For example, in the standard defiltiamsl'& are
defined as a flag pair for enclosing text inkemphasis> element.

When the first sequence of a paired flag is encountered, its partner is expected to be found within the
same text unit. In the default mode, the units are a paragraphs, or part-paragraphs if footnotes inter-
vene. In literal layout mode, the text is processed line by line. Each member of the pair is replaced by
its replacement text.

Multiple occurrences of paired flags must be correctly nested. Note that, thdpigtliagnoses an
error for badly nested flag pairs, it does not prevent you from generating invalid XML. For example,
DocBook does not allowkemphasis> within <literal> , though it does allowkliteral>

within <emphasis> .

2.4 Unrecognized flag sequences

If an ampersand is not followed by a character sequence in one of the forms described in the
preceding sections, an error occurs.

2.5 Standard flag sequences
These are the standalone flag sequences that are definegtdil#ys file in thexfpt library:

&& becomes& (ampersand)
&-- becomes– (en-dash)
&~ becomes (‘hard’ space)

These are the flag pairs that are defined irstidifeags file in thexfpt library:

&"..."& becomesquote>...</quote>

&'...'& becomesemphasis>...</emphasis>

&*..*& becomesemphasis role="bold">...</emphasis>
&... & becomexliteral>...</literal>

& ... & becomesfilename>...</filename>

&(..)& becomescommand>...</command>

&[...]& becomesfunction>...</function>

&%...%& becomesoption>...</option>

&$...$& becomesvarname>...</varname>

&<..>& becomes...>

&<<..>>& becomesxref linkend="..."/>
For example, if you want to include a literal XML element in your output, you can do it like this:

&<element>& . If you want to include a longer sequence of literal XML, changing to the literal
XML mode may be more convenient.

5 Flag sequences

3. Built-in directive processing

The directives that are built into the codex@t are now described in alphabetical order. You can see
more examples of their use in the descriptions of the standard macros in chapter 4.

3.1 The .arg directive

This directive may appear only within the body of a macro. It must be followed by a single number,
optionally preceded by a minus sign. If the number is positive (no minus sign), subsequent lines, up to
a .endarg directive, are skipped unless the macro has been called with at least that number of
arguments and the given argument is not an empty string. If the number is negative (minus sign
present), subsequent lines are skipped if the macro has been called with fewer than that number of
arguments, or with an empty string for the given argument. For example:

.macro example

.arg 2

Use these lines if there are at least 2 arguments
and the second one is not empty. Normally there would
be a reference to the 2nd argument.

.endarg

.arg -2

Use this line unless there are at least 2 arguments
and the second one is not empty.

.endarg

.endmacro

Note that if a macro is defined with default values for its arguments, these are not countedary the
directive, which looks only at the actual arguments in a particular macro call.

The.arg directive may be nested.

3.2 The .eacharg directive

This directive may appear only within the body of a macro. It may optionally be followed by a single
number; if omitted the value is taken to be 1. Subsequent lines, up.¢mdeachdirective, are
processed multiple times, once for each remaining argument. Urdige an argument that is an
empty string is not treated specially. However, likeg, only the actual arguments of a macro call are
considered. Default argument values do not count.

The number given witheachargdefines which argument to start with. If the macro is called with
fewer arguments, the lines up ®ndeachare skipped, and are not processed at all. When these lines
are being processed, the remaining macro arguments can be referenced relative to the current argu-
ment.$+1 refers to the current argumefit;2 to the next argument, and so on.

The .endeachdirective may also be followed by a number, again defaulting to 1. Waedeachis
reached, the current argument number is incremented by that number. If there are still unused argu-
ments available, the lines betweeachargand.endeachare processed again.

This example is taken from the coding for the standaosv macro, which generates arentry>
element for each of its arguments:

.eacharg
&<entry>&$+1&</entry>&
.endeach

This example is taken from the coding for the standé@eble macro, which processes arguments in
pairs to define the table’s columns, starting from the fifth argument:

.eacharg 5
&<colspec colwidth="$+1" align="$+2"/>&
.endeach 2

6 Built-in directive processing

The.eachargdirective may in principle be nested, though this does not seem useful in practice.

3.3 The .echo directive

This directive takes a single string argument. It writes it to the standard error stream. Within a macro,
argument substitution takes place, but no other processing is done on the string. This directive can be
useful for debugging macros or writing comments to the user.

3.4 The .endarg directive
See the description adrg above.

3.5 The .endeach directive
See the description ofachargabove.

3.6 The .endinliteral directive
See the description dhliteral below.

3.7 The .flag directive

This directive is used to define flag sequences. The directive must be followed either by a standalone
flag sequence and one string in quotes, or by a flag pair and two strings in quotes. White space
separates these items. For example:

flag && "&"
flag &" "& "<quote>" "</quote>"

There are more examples in the definitions of the standard flags. If you redefine an existing flag, the
new definition overrides the old. There is no way to revert to the previous definition.

3.8 The .include directive

This directive must be followed by a single string argument that is the path to a file. The contents of
the file are read and incorporated into the input at this point. If the string does not contain any slashes,
the path to thept library is prepended. Otherwise, the path is used unalterethdiude is used

inside a macro, it is evaluated each time the macro is called, and thus can be used to inglude a
different file on each occasion.

3.9 The .inliteral directive
This directive may appear only within the body of a macro. It must be followed by one of the words

“layout”, “text”, “off”, or “xml”. If the current literal mode does not correspond to the word, subse-
guent lines, up to a&ndinliteral directive, are skipped. Thmliteral directive may be nested.

3.10 The .literal directive

This must be followed by one of the words “layout”, “text”, “off”, or “xml". It forces an end to a
previous paragraph, if there is one, and then switches between processing modes. The default mode is
the “off” mode, in which text is processed paragraph by paragraph, and flags are recognized. Section
1.3 describes how input lines are processed in the four modes.

3.11 The .macro directive

This directive is used to define macros. It must be followed by a macro name, and then, optionally, by
any number of arguments. The macro name can be any sequence of non-whitespace characters. The
arguments in the definition provide default values. The following lines, ugrnidmacrg form the

7 Built-in directive processing

body of the macro. They are not processed in any way when the macro is defined; they are processed
only when the macro is called (see section 1.5).

Within the body of a macro, argument substitutions can be specified by means of a dollar character
and an argument number, for exam@®8, for the third argument. See alssachargabove for the use

of $+ to refer to relative arguments when looping through them. A reference to an argument that is
not supplied, and is not given a default, results in an empty substitution.

There is also a facility for a conditional substitution. A reference to an argument of the form:
$=<digits><delimiter><text><delimiter>

inserts the text if the argument is defined and is not an empty string, and nothing otherwise. The text
is itself scanned for flags and argument substitutions. The delimiter must be a single character that
does not appear in the text. For example:

&<chapter$=2+ id="$2"+>&
If this appears in a macro that is called with only one argument, the result is:
<chapter>
but if the second argument is, salycd , the result is:
<chapter id="abcd">
This conditional feature can be used with both absolute and relative argument references.
If a dollar character is required as data within the body of a macro, it must be doubled. For example:

.macro price
The price is $$1.
.endmacro

If you redefine an existing macro, the new definition overrides the old. There is no way to revert to the
previous definition. If you define a macro whose name is the same as the name of a built-in directive
you will not be able to call it, becausiet looks for built-in directives before it looks for macros.

It is possible to define a macro within a macro, though clearly care must be taken with argument
references to ensure that substitutions happen at the right level.

3.12 The .nest directive

This directive must be followed by one of the words “begin” or “end”. It is used to delimit a nested
sequence of independent text items that occurs inside another, such as the contents of a footnote
inside a paragraph. This directive is usually used inside a macro. For examipletnate macro

could be defined like this:

.macro footnote
&<footnote>&
.nest begin
.endmacro

At the start of a nested sequence, the current mode and paragraph state are remembdépethand
reverts to the default mode and “not in a paragraph”. At the end of a nested sequence, if a paragraph
has been started, it is terminated, and ttipinreverts to the previous state.

3.13 The .nonl directive

This directive must be followed by a single string argument. It is processed as an input line witl+out a
newline at the end. This facility is useful in macros when constructing a single data line from several
text fragments. See for example thewmacro in the standard macros.

8 Built-in directive processing

3.14 The .pop directive

xfpt keeps a stack of text strings that are manipulated bypheh and.pop directives. When the end
of the input is reached, any strings that remain on the stack are popped off, processed for flags, and
written to the output.

Each string on the stack may, optionally, be associated with an upper case lefiep i followed

by an upper case letter, it searches down the stack for a string with the same letter. If it cannot find
one, it does nothing. Otherwise, it pops off, processes, and writes out all the strings down to and
including the one that matches.

If .popis given without a following letter, it pops one string off the stack and writes it out. If there is
nothing on the stack, an error occurs.

3.15 The .push directive

This directive pushes a string onto the stack. If the rest of the command line starts with an upper case
letter followed by white space, that letter is associated with the string that is pushed, which consists of
the rest of the line. For example, tkbapter macro contains this line:

.push C &</chapter>&
Earlier in the macro there is the line:
.pop C

This arrangement ensures that any previous chapter is terminated before starting a new one, and also
when the end of the input is reached.

3.16 The .revision directive

This directive is provided to make it easy to set taeisionflag attribute on XML elements in a
given portion of the document. The DocBook specification states thaethgionflag attribute
is common to all elements.

The.revision directive must be followed by one of the words “changed”, “added”, “deleted”, or “off".
For any value other than “off”, it causes the internal variatif#.rev to be set taevisionflag=
followed by the given argument. If the argument is “off”, the internal variable is emptied.

The contents okfpt.rev are included in everxpara> element thaixfpt generates. In addition, a
number of the standard macros contain referencdpttoev in appropriate places. Thus, setting:

.revision changed
should cause all subsequent text to be marked upravitbionflag attributes, until
.revision off

is encountered. Unfortunately, at the time of writing, not all DocBook processing software pays
attention to therevisionflag attribute. Furthermore, some software grumbles that it is
“unexpected” on some elements, though it does still seem to process it correctly.

For handling the most common case (setting and unsetting “changed”), the standard.maw@sd
.wenare provided (see section 4.11).

3.17 The .set directive

This directive must be followed by a name and a text string. It defines a user variable and gives it a
name. A reference to the name in the style of an XML entity causes the string to be substituted,
without further processing. For example:

.set version 4.99

This could be referenced &sversion; . If a variable is given the name of an XML entity, you will
not be able to refer to the XML entity, because local variables take precedence. There is no way to
delete a local variable after it has been defined.

9 Built-in directive processing

4. The standard macros for DocBook

A set of simple macros for commonly needed DocBook features is providetptia library. This
may be extended as experience wifpt accumulates. The standard macros assume that the standard
flags are defined, so a document that is going to use these features should start with:

.include stdflags
.include stdmacs

All the standard macros excepew, index, andurl are intended to be called as directive lines. Their
names are therefore shown with a leading dot in the discussion below.

4.1 Overall setup

There are two macros that should be used only once, at the start of the documerdodiha@ok
macro has no arguments. It inserts into the output file the standard header material for a DocBook
XML file, which is:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.2//[EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">

The .book macro has no arguments. It generaté®ok> and pushes/book> onto the stack so
that it will be output at the end.

4.2 Chapters, sections, and subsections

Chapters, sections, and subsections are supported by three macros that all operate in the same way.
They are.chapter, .section and.subsection They take either one, two, or three arguments. The first
argument is the title. If a second argument is present, and is nhot an empty string, it is set as an ID, and
can be used in cross-references. For example:

.chapter "Introduction”

sets no ID, but
.section "A section title" "SECTdemo"

can be referenced from elsewhere in the document by a phrase such as:
see section &<<SECTdemo>>&

When the title of a chapter of section is being used as a running head or foot (for example), it may be
too long to fit comfortably into the available space. DocBook provides the facility for a title abbrevi-
ation to be specified to deal with this problem. If a third argument is given to one of these macros, it
causes &titleabbrev> element to be generated. In this case, a second argument must also be
provided, but if you do not need an ID, the second argument can be an empty string. For example:

.chapter "This chapter has quite a long title" "™ "Long title"

Where and when the abbreviation is used in place of the full title is controlled by the stylesheet when
the XML is processed.

These three macros use the stack to ensure that each chapter, section, and subsection is terminated at
the correct point. For example, starting a new section automatically terminates an open subsection and
a previous section.

4.3 Prefaces, appendixes, and colophons

The macrospreface .appendix, and.colophonoperate in the same way ahapter, except that the
first and the last have the default title strings “Preface” and “Colophon”.

10 Sandard macros

4.4 URL references

The url macro generates URL references, and is intended to be called inline within the text that is
being processed. It generates@aink> element, and has either one or two arguments. The first
argument is the URL, and the second is the text that describes it. For example:

More details are &url(http://x.example, here).
This generates the following XML:
More details are <ulink url="http://x.example">here</ulink>.

If the second argument is absent, the contents of the first argument are used instdad.délled as
a directive, there will be a newline in the output aftdulink> , which in most cases (such as the
example above), you do not want.

4.5 ltemized lists

The .ilist macro marks the start of an itemized list, the items of which are normally rendered with
bullets or similar markings. The macro can optionally be called with one argument, for which there is

no default. If the argument is present, it is used to adaaak= attribute to the<itemizedlist>

element that is generated. The mark names that can be used depend on the software that processes the
resulting XML. For HTML output, “square” and “opencircle” work in some browsers.

The text for the first item follows the macro call. The start of the next item is indicated byéxe
macro, and the end of the list l@ndlist For example:

dlist

This is the first item.

.next

This is the next item.

.endlist

There may be more than one paragraph in an item.

4.6 Ordered lists

The.olist macro marks the start of an ordered list, the items of which are numbered. If no argument is
given, arabic numerals are used. One of the following words can be given as the macro’s argument to
specify the numeration:

arabic arabic numerals
loweralpha lower case letters
lowerroman lower case roman numerals
upperalpha upper case letters

upperroman upper case roman numerals

The text for the first item follows the macro call. The start of the next item is indicated byéxe
macro, and the end of the list lgndlist. For example:

.olist lowerroman
This is the first item.
.next

This is the next item.
.endlist

There may be more than one paragraph in an item.

4.7 Variable lists

A variable list is one in which each entry is composed of a set of one or more terms and an associated
description. Typically, the terms are printed in a style that makes them stand out, and the description
is indented underneath. The start of a variable list is indicated byvtl® macro, which has one
optional argument. If present, it defines a title for the list.

11 Sandard macros

Each entry is defined by .@item macro, whose arguments are the terms. This is followed by the body
of the entry. The list is terminated by tleadlist macro. For example:

.vlist "Font filename extensions"
vitem "TTF"

TrueType fonts.

.vitem "PFA" "PFB"

PostScript fonts.

.endlist

As for the other lists, there may be more than one paragraph in an item.

4.8 Nested lists

Lists may be nested as required. Some DocBook processors automatically choose different bullets for
nested itemized lists, but others do not. Thadlist macro has no useful arguments. Any text that
follows it is treated as a comment. This can provide an annotation facility that may make the input
easier to understand when lists are nested.

4.9 Displayed text

In displayed text each non-directive input line generates one output line<litbellayout>
DocBook element is used to achieve this. Two kinds of displayed text are supported by the standard
macros. They differ in their handling of the text itself.

The macro.display is followed by lines that are processed in the same way as normal paragraphs:
flags are interpreted, and so there may be font changes and so on. The lines are processed in literal
layout mode. For example:

display
& -0'& set output destination

& -S’& set library path
.endd

The output is as follows:

-0 set output destination
-S set library path

The macro.codeis followed lines that are not processed in any way, except to turn ampersands and
angle brackets into XML entities. The lines are processed in literal text mode. In addition,
class="monospaced" is added to the<literallayout> element, so that the lines are dis-
played in a monospaced font. For example:

.code
Z = sgri(x*x + y*y);
.endd

As the examples illustrate, both kinds of display are terminated bgnild macro.

4.10 Block quotes

The macro pair.blockquote and .endblockquote are used to wrap the lines between them in a
<blockquote> element.

4.11 Revision markings

Two macros are provided to simplify setting and unsetting the “changed” revision marking (see
section 3.16). When the revised text is substantial (for example, a complete paragraph, table, display,
or section), it can be placed betweerew and.wen, as in this example:

This paragraph is not flagged as changed.
.new

12 Sandard macros

This is a changed paragraph that contains a display:
display

whatever

.endd

This is the next paragraph.

.wen

Here is the next, unmarked, paragraph.

When called like this, without an argument, in ordinary tergw terminates the current paragraph,
and.wen always does so. Therefore, even though there are no blank lines be&darer .wen above,

the revised text will end up in a paragraph of its own. (You can, of course, put in blank lines if you
wish.)

If want to indicate that just a few words inside a paragraph are revised, you can caévihmacro
with an argument. The macro can be called either as a directive or inline:

This is a paragraph that has
.new "a few marked words"
within it. Here are &new(some more) marked words.

The effect of this is to generate<phrase> XML element with therevisionflag attribute set.
The.wenmacro is not used in this case.

You can use thenew.wenmacro pair to generatesgphrase> element inside a section of displayed
text. For example:

display

This line is not flagged as changed.
.new

This line is flagged as changed.
.wen

This line is not flagged as changed.
.endd

This usage works with bothlisplay and.code Within a.display section you can also cathew with
an argument, either as a directive or inline. This does not work.dode because its lines are
processed in literal text mode.

If you want to add revision indications to part of a table, you must use an inline ca#wfivithin an
argument of therow macro (see below). This is the only usage that works in this case.

4.12 Informal tables

The .itable macro starts an informal (untitled) table with some basic parameterization. If you are
working on a large document that has many tables with the same parameters, the best approach is to
define your own table macros, possibly calling the standard one with specific arguments.

The.itable macro has four basic arguments:

(1) The frame requirement for the table, which may be one of the words “all”, “bottom”, “none”
(the default), “sides”, “top”, or “topbot”.

(2) The “colsep” value for the table. The default is “0”, meaning no vertical separator lines between
columns. The value “1” requests vertical separator lines.

(3) The “rowsep” value for the table. The default is “0”, meaning no horizontal lines between rows.
The value “1” requests horizontal separator lines.

(4) The number of columns.

These arguments must be followed by two arguments for each column. The first specifies the column
width, and the second its aligmnent. A column width can be specified as an absolute dimension such
as 36pt or 2in, or as a proportional measure, which has the form of a number followed by an asterisk.
The two forms can be mixed — see the DocBook specification for details.

13 Sandard macros

Straightforward column alignments can be specified as “center”, “left”, or “right”. DocBook also has
some other possibilities, but sadly they do not seem to include “centre”.

Each row of the table is specified using.raw macro; the entries in the row are the macros’s
arguments. The table is terminated.egdtable which has no arguments. For example:

.itable all 1 1 2 1in left 2in center
.row "cell 11" "cell 12"

.row "cell 21" "cell 22"

.endtable

This specifies a framed table, with both column and row separator lines. There are two columns: the
first is one inch wide and left aligned, and the second is two inches wide and centred. There are two
rows. The resulting table looks like this:

cell 11 cell 12
cell 21 cell 22
The .row macro does not set threvisionflag attribute in the<entry> elements that it gener-

ates because this appears to be ignored by all current XML processors. However, you can use an
inline call of thenew macro within an entry to generate<phrase> element withrevisionflag
set.

4.13 Formal tables

The .table macro starts a formal table, that is, a table that has a title, and which can be cross
referenced. The first argument of this macro is the table’s title; the second is an identifier for cross-
referencing. If you are not going to reference the table, an empty string must be supplied. From the
third argument onwards, the arguments are identical tdtéfsde macro. For example:

.table "A title for the table" "™ all 1 1 2 1in left 2in center
.row "cell 11" "cell 12"

.row "cell 21" "cell 22"

.endtable

4.14 Figures and images

A figure is enclosed betweefigure and.endfigure macros. The first argument dfgure provides a
title for the figure. The second is optional; if present, it is a tag for references to the figure.

A figure normally contains an image. Thiemage macro can be used in simple cases. It generates a
<mediaobject> element containing agimageobject> . The first argument is the name of the

file containing the image. The remaining arguments are optional; an empty string must be supplied as
a placeholder when one that is not required is followed by one that is set.

» The second argument specifies a scaling factor for the image, as a percentage. Thus, a value of 50
reduces the image to half size.

» The third argument specifies an alignment for the image. It must be de# of (default),right |
orcenter (or evencentre if the DocBook processor you are using can handle it).

* The fourth and fifth arguments specify the depth and width, respectively. How these values are
handled depends on the processing software.

Here is an example of the input for a figure, with all the image options defaulted:

figure "My figure's title" "FIGfirst"
.image figureOl.eps
.endfigure

Here is another example, where the figure is reduced to 80% and centred:

14 Sandard macros

figure "A reduced figure"
.image figure02.eps 80 center
.endfigure

4.15 Footnotes

Footnotes can be specified betwetotnote and .endnote macros. Within a footnote there can be
any kind of text item, including displays and tables. When a footnote occurs in the middle of a
paragraph, paired flags must not straddle the footnote. This example is wrong:

The &'quick
.footnote

That's really fast.
.endf

brown'& fox.

The correct markup for this example is:

The &'quick'&
.footnote

That's really fast.
.endf

&'brown'& fox.

4.16 Indexes

The .index macro generatesindexterm> elements (index entries) in the output. It takes one or
two arguments. The first is the text for the primary index term, and the second, if present, specifies a
secondary index term. This macro can be called either from a directive line, or inline. However, it is
mostly called as a directive, at the start of a relevant paragraph. For example:

.index goose "wild chase"
The chasing of wild geese...

You can generate “see” and “see also” index entries by ugiggx-seeand.index-seealsonstead of
.index. The first argument of these macros is the text for the “see”. For example:

.index-see "chase" "wild goose"

This generates:

<indexterm>

<primary>wild goose</primary>
<see>chase</see>
</indexterm>

If you want to generate an index entry for a range of pages, you can uséntlex-from and
.index-to macros. The first argument of each of them is an ID that ties them together. The second and
third arguments ofindex-from are the primary and secondary index items. For example:

.index-from "ID5" "indexes
... <lines of text> ...
.index-to "ID5"

The .makeindexmacro should be called at the end of the document, at the point where you want an
index to be generated. It can have up to two arguments. The first is the title for the index, for which
the default is “Index”. The second, if present, causesle= attribute to be added to thendex>

element that is generated. For this to be useful, you need to geréndiexterm> elements that

have similarrole= attributes. The standaiiddex macro cannot do this. If you want to generate
multiple indexes using this mechanism, it is best to define your own macros for each index type. For
example:

handling ranges"

.macro cindex
&<indexterm role="concept">&

15 Sandard macros

&<primary>&$1&</primary>&

.arg 2
&<secondary>&$2&</secondary>&
.endarg

&</indexterm>&

.endmacro

This defines acindex macro for the “concept” index. At the end of the document you might have:

.makeindex "Concept index
.makeindex

concept"

As long as the processing software can handle multiple indexes, this causes two indexes to be
generated. The first is entitled “Concept index”, and contains only those index entries that were
generated by theindex macro. The second contains all index entries.

16 Sandard macros

	Contents
	1. Introduction
	 1.1 The xfpt command line
	 1.2 A short xfpt example
	 1.3 Literal and non-literal processing
	 1.4 Format of directive lines
	 1.5 Calling macros

	2. Flag sequences
	 2.1 Flag sequences for XML entities and xfpt variables
	 2.2 Flag sequences for calling macros
	 2.3 Other flag sequences
	 2.4 Unrecognized flag sequences
	 2.5 Standard flag sequences

	3. Built-in directive processing
	 3.1 The .arg directive
	 3.2 The .eacharg directive
	 3.3 The .echo directive
	 3.4 The .endarg directive
	 3.5 The .endeach directive
	 3.6 The .endinliteral directive
	 3.7 The .flag directive
	 3.8 The .include directive
	 3.9 The .inliteral directive
	 3.10 The .literal directive
	 3.11 The .macro directive
	 3.12 The .nest directive
	 3.13 The .nonl directive
	 3.14 The .pop directive
	 3.15 The .push directive
	 3.16 The .revision directive
	 3.17 The .set directive

	4. The standard macros for DocBook
	 4.1 Overall setup
	 4.2 Chapters, sections, and subsections
	 4.3 Prefaces, appendixes, and colophons
	 4.4 URL references
	 4.5 Itemized lists
	 4.6 Ordered lists
	 4.7 Variable lists
	 4.8 Nested lists
	 4.9 Displayed text
	 4.10 Block quotes
	 4.11 Revision markings
	 4.12 Informal tables
	 4.13 Formal tables
	 4.14 Figures and images
	 4.15 Footnotes
	 4.16 Indexes

